Successful Determination of Larval Dispersal Distances and Subsequent Settlement for Long-Lived Pelagic Larvae
نویسندگان
چکیده
Despite its importance, we still have a poor understanding of the level of connectivity between marine populations in most geographical locations. Taking advantage of the natural features of the southeast coast of New Zealand's North Island, we deployed a series of settlement stations and conducted plankton tows to capture recent settlers and planktonic larvae of the common intertidal gastropod Austrolittorina cincta (6-8 week larval period). Satellite image analysis and ground truthing surveys revealed the absence of suitable intertidal rocky shore habitat for A. cincta over a 100 km stretch of coastline between Kapiti Island to the south and Wanganui to the north. Fifteen settlement stations (3 replicates × 5 sites), which were used to mimic intertidal habitat suitable for A. cincta, were deployed for two months around and north of Kapiti Island (at 0.5, 1, 5, 15, 50 km). In addition, we also conducted plankton tows at each settlement station when the stations were first deployed to collect A. cincta larvae in the water column. On collection, all newly settled gastropods and larvae in the plankton samples were individually isolated, and a species-specific microsatellite marker was used to positively identify A. cincta individuals. Most of the positively identified A. cincta settlers and larvae were collected at the first three sampling stations (<5 km). However, low numbers of A. cincta settlers and larvae were also recorded at the two more distant locations (15 and 50 km). Dispersal curves modeled from our data suggested that <1% of gastropod larvae would travel more than 100 km. While our data show that most larvae are retained close to their natal populations (<5 km), a small proportion of larvae are able to travel much larger geographic distances. Our estimates of larval dispersal and subsequent settlement are one of only a few for marine species with a long-lived larva.
منابع مشابه
Behavior Constrains the Dispersal of Long-Lived Spiny Lobster Larvae
Behavior such as ontogenetic vertical migration (OVM) limits the transport of marine larvae with short pelagic larval durations (PLDs), but its effect on the supposed long-distance dispersal of larvae with long PLDs is unknown. We conducted laboratory tests of ontogenetic change in larval ph ototaxis and examin ed size-specific patterns of larval distribution in the plankton to characterize OVM...
متن کاملPelagic Larval Duration and Settlement Size of Apogonidae, Labridae, Scaridae, and Tripterygiidae Species in a Coral Lagoon of Okinawa Island, Southern Japan
Pelagic larval duration and settlement sizes in species of Apogonidae, Labridae, Scaridae, and Tripterygiidae in a coral lagoon in southern Japan were examined. Sampling was conducted monthly from July 2004 to June 2005 in the coral lagoon and channel of the Oh-do Beach on Okinawa Island, Japan. Pelagic larval duration was estimated by the number of otolith increments. Mean standard length at s...
متن کاملEvidence of Self-recruitment in Demersal Marine Populations
The majority of shallow-water marine species have a two-phase life cycle in which relatively sedentary, demersal adults produce pelagic larvae. Because these larval stages are potentially subject to dispersal by ocean currents, it has been widely accepted that local populations are open, with recruitment resulting from the arrival of larvae from non-local sources. However, a growing number of s...
متن کاملRelationship between pelagic larval duration and geographic distribution of Mediterranean littoral fishes
We examined the relationship between pelagic larval duration (PLD)—a predictor of a species’ dispersal potential—and the geographic distribution range of 62 Mediterranean littoral fishes. We found a significant, positive, weak relationship between PLD and distribution range. This relationship was observed in species with long PLDs that can cross the few dispersal barriers (Macaronesian Islands)...
متن کاملSoundscape manipulation enhances larval recruitment of a reef-building mollusk
Marine seafloor ecosystems, and efforts to restore them, depend critically on the influx and settlement of larvae following their pelagic dispersal period. Larval dispersal and settlement patterns are driven by a combination of physical oceanography and behavioral responses of larvae to a suite of sensory cues both in the water column and at settlement sites. There is growing evidence that the ...
متن کامل